

SECURE AND ENERGY-EFFICIENT TASK SCHEDULING IN CLOUD CONTAINER

USING VMD-AOA AND ECC-KDF

Muthakshi S1, Mahesh K2

1Doctoral Research Scholar, Department of Computer Applications, Alagappa University

Karaikudi, Tamilnadu, India

[e-mail: muthakshi.researchscholar@gmail.com]
 2 Professor and Head, Department of Computational Logistics, Alagappa University, Karaikudi,

Tamilnadu, India

[e-mail : mahesh.alagappa@gmail.com]

ABSTRACT

The surge of lightweight containers in cloud storage, propelled by technological advancements, offers dependable

services. However, the inherent security concerns arising from shared access to the host Operating System (OS)

necessitate an effective solution. This paper introduces an energy-efficient and secure scheduling approach to tackle

this issue. Users register task requests with a resource manager, which collects and preprocesses data to eliminate

redundancies. The Levenberg-Marquardt Multi-Layer Perceptron Neural Network (LM-MLPNN) optimizes container

resource utilization by analyzing user requests. The Homography Transform-based K-Mode Algorithm (HT-KMA)

facilitates efficient clustering through attribute extraction. To address imbalances, the Weighted Round Robin (WRR)

technique is employed. An optimal container, selected by the Variational Mode Decomposition-based Archimedes

Optimization Algorithm (VMD-AOA), undergoes Elliptic Curve-based Key Derivation Function (EC-KDF) for

enhanced security before being transmitted to the resource manager. Experimental results demonstrate the superiority

of our methodology over existing algorithms.

Keywords: Cloud container; Levenberg-Marquardt Multi-Layer Perceptron Neural Network (LM-MLPNN);

Homography Transform-based K-Mode Algorithm (HT-KMA); Variational Mode Decomposition based

Archimedes Optimization Algorithm (VMD-AOA); Weighted Round Robin (WRR).

1.0 INTRODUCTION

In various fields, the cloud has emerged as a recent technology due to its flexibility and ease of management. Many

service providers, often referred to as tenants, have adopted cloud technology for a majority of their applications,

transitioning from traditional local service environments (Kong, Wang, Ma, Chen, et al., 2020). One of the cutting-

edge technologies widely employed for running a diverse range of applications is cloud containers. These containers

are essentially self-contained software packages that include all the essential elements needed to execute a specific

application in various environments, from private data centers to the public cloud, or even on a developer's personal

laptop (Kang et al., 2021). These portable and lightweight abstractions encompass all the necessary components, such

as files, system libraries, and environment variables, required for running the desired software; these are commonly

referred to as containers (Barati et al., 2022). Containers have gained popularity for specific applications because they

enable the use of the same OS kernel for different applications, reducing startup times and resource requirements.

They find applications in various domains, including Internet of Things (IoT) services, fog computing, smart cars, and

service meshes, among others. Some of the well-known containerization tools include Docker, Kubernetes, and

OpenVZ (Gholipour et al., 2020).

Portability stands out as a crucial feature of containers, allowing for effortless deployment on various servers once

created (Kong, Wang, Ma, Xu, et al., 2020). This attribute offers a significant advantage, as containers can be readily

employed to establish environments for development, testing, integration, and production across the software

development lifecycle. Nevertheless, container security is a paramount concern and represents a primary hurdle to

their widespread adoption (Walkowski et al., 2019). Given that containers share a substantial portion of their

computing resources, including the operating system, any intrusion that compromises their integrity may result in the

malfunctioning of running applications. Consequently, ensuring container security against malicious users is

imperative (Sun et al., 2020). In the networking domain, various approaches have been introduced to enhance the

efficient utilization of cloud containers. Deep learning techniques are employed to detect attacks occurring within the

container environment (Bhowmik et al., 2020). Furthermore, resource allocation within the container environment, a

critical issue for processing a large number of user requests, is addressed to enable effective task execution (Hussein

et al., 2019). Various techniques have been introduced to streamline resource allocation. However, certain limitations

persist, as elaborated in section 1.1. In light of these challenges, this paper puts forth a proposal for energy-efficient

and secure task scheduling in the cloud container environment. The utilization of cryptographic techniques for

container security serves to prevent forgery and breaches that might otherwise compromise the integrity of cloud

containers (Banse et al., 2021).

1.1 Problem statement

The prevailing cloud storage landscape has witnessed significant benefits from existing methodologies. However, it

is not devoid of certain inherent challenges, including:

 Container Compromises Due to Traffic: The increased network traffic over containers leads to

vulnerabilities, such as compromised containers and Distributed Denial of Service (DoS) attacks, resulting

in system flooding and performance degradation.

 Malicious User Requests: Some users may submit requests with malicious intent, seeking to maximize their

resource utilization on cloud containers, ultimately resulting in resource loss for legitimate users.

 Confidential Data Storage: Ensuring the secure scheduling of user data in highly confidential containers is

paramount. However, contemporary challenges arise as the volume of incoming data continues to grow,

necessitating innovative solutions for efficient data storage.

To address these issues, our paper focuses on an energy-efficient and secure scheduling approach that leverages

advanced techniques to enhance the utilization and security of cloud containers.

1.2 Contributions

To address the identified limitations, this paper introduces a secured cloud container-based framework, which makes

the following significant contributions:

 Enhanced Attack Detection and Resource Balancing: Accidental data processing failures or disruptions are

mitigated through the utilization of the LM-MLPNN technique, which efficiently detects potential attacks.

This, in turn, aids in the effective balancing of resources within the cloud container environment.

 Optimal Container Selection for Task Allocation: The paper introduces a method based on Variational Mode

Decomposition with the Archimedes Optimization Algorithm (VMD-AOA) to determine the most suitable

container for each task, optimizing throughput and performance.

 Load Balancing and Container Lifecycle Management: The framework incorporates the Homography

Transform-based K-Mode Algorithm (HT-KMA) and a load balancing component to distribute workloads

across available cluster nodes and oversee the lifecycle of containers. These elements play a crucial role in

ensuring efficient resource utilization and container management.

1.3 Organization of the paper

The remaining portion is structured as follows: Section 2 provides an in-depth exploration of the relevant literature,

Section 3 presents a comprehensive elucidation of the proposed methodology, Section 4 conducts a comparative

analysis of the outcomes and discussions derived from the proposed work in contrast to the pre-existing research, and

the paper concludes with a discussion of future avenues for exploration in Section 5.

2.0 LITERATURE REVIEW

(Jin et al., 2021) presented an effective Dynamic Security Evaluation and Optimization of the Moving target defense

(DSEOM) technique. In their study, optimization strategies were determined by periodically updating the cloud

containers. Additionally, an established specific Multi-Dimensional Attack Graphs (MDAG) approach was used for

the effective attack detection process. As a result, the presented approach effectively avoided the problem of

effectiveness drift that had occurred in the proactive defense environment. However, in the container environment,

the presented approach failed to concentrate on the weak violation problem.

(Shameem Ahamed et al., 2021) demonstrated a methodology grounded in the secure auditing of the Docker container

in the cloud environment. Initially, an effective identification and assessment of vulnerabilities in the container images

were achieved through the use of a Vulnerability Centric Approach (VCA). To secure the container, a checklist was

employed, and it was aligned based on the Container Security Verification Standards (CSVS). Consequently, sensitive

information was effectively preserved. However, as critical vulnerabilities could never be entirely avoided by this

approach, utilizing the checklist for preserving the security of the container proved to be ineffective.

 (Vaishali et al., 2021) introduced the Guided Container Selection (GCS) technique for the effective scheduling of

data using neural networks. In their study, ranking was carried out based on user suggestions, and the container was

selected using the Deep Neural Network (DNN). This approach effectively mitigated transmission and computational

overhead. However, container selection based on user suggestions proved to be ineffective and led to a degradation in

performance.

(Karn et al., 2021) explored an Automatic Anomaly Detection in the container using Explainable Machine Learning

(AAD-EML) technique. Features were extracted from the continuous matching of the largest syscalls subsequence,

resulting in the generation of signatures for the anomalous pods. An effective anomaly detection criterion was

achieved by creating boundaries using ML techniques. This approach improved performance by avoiding the problem

of inference. However, the major downsides of this approach were convergence instability and longer training time.

(Wang et al., 2022) deployed a Container Guard-based attack detection technique in the cloud environment. In this

study, multivariate time-series data was collected from the container in a non-intrusive manner, and the attack patterns

were represented normally using an ensemble of Variational Autoencoders (VA). This approach harnessed the

generative nature of the VA, resulting in improved performance with efficient detection of meltdown and spectre

attacks. Nevertheless, one drawback was the performance's dependence on the window size.

(Coppolino et al., 2021) designed the Virtual Secure Enclave-based Homomorphic Encryption (VSE-HE)

methodology for securing data transmission. This approach effectively protected data-in-use from attackers with high

privilege. Through the use of the HE approach, data was initially encrypted, transformed into ciphertext, and stored

in the cloud for further processing. Consequently, the presented approach ensured the privacy of all users in the

environment. However, performing ciphertext conversion after homomorphic encryption rendered the use of, HE

unusable.

(Xie et al., 2021) developed an HBRSS-based method for securing the processing and transmission of data in the

cloud environment. In this approach, data was initially divided into blocks and organized in a ring format, followed

by encryption using the Homomorphic Encryption (HE) technique. To enhance function privacy and prevent flaws

and injection attacks, fuzzy processing was employed. As a result, this method effectively minimized the risks of data

destruction and tampering. However, the approach's effectiveness was compromised by performing encryption

without authentication.

(Liu et al., 2020) employed a protocol-independent container network observability system. Initially, data was

collected from a cluster of users, and features were extracted and updated in the controller. The approach involved

many containers where protocol matching and filtering occurred. Experimental results demonstrated the efficacy of

the approach, primarily through throughput. However, the transparency in data collection impacted the security of

data in the cloud container.

(Niu et al., 2020) recommended a Geo-aware Multi-agent Task Allocation (GMTA) framework for securing data in

the container environment. Initially, data was divided into numerous subtasks, and an auction was conducted by the

agents to allocate tasks to the respective bidders. The winner of the auction was then provided with the respective

container for performing the prescribed tasks, resulting in minimized traffic overhead and makespan. However, task

allocation based on the auction process impacted the security of the data.

(Singh et al., 2021) presented an efficient ensemble-based resource allocation technique. In this approach, workloads

were allocated to multiple containers situated at the edge servers to perform various tasks. The resource allocation

process utilized a game-based approach, with Software Defined Network (SDN) serving as a centralized controller in

this methodology. The utilization of numerous containers at the edge reduced energy consumption, consequently

improving network latency. However, the presented method did not adequately address data security.

In the presented study, a comprehensive overview of contemporary approaches in cloud container security and

efficiency was provided. The Table 1 below succinctly captured key methodologies, strengths, and weaknesses from

recent literature.

Reference Technique/Methodology Main Focus Pros Cons

Jin et al., 2021 DSEOM Dynamic Security

Evaluation and

Optimization of

Moving Target

Defense

(DSEOM)

Effectively

addressed

effectiveness

drift in proactive

defense

Failed to

concentrate on

the weak

violation problem

Shameem Ahamed

et al., 2021 VCA, CSVS

Secure auditing

of Docker

container in the

cloud

environment

Identified

vulnerabilities,

aligned with

CSVS, preserved

sensitive

information

Checklist proved

ineffective

against critical

vulnerabilities

Vaishali et al.,

2021 GCS, DNN

Guided Container

Selection (GCS)

for effective

scheduling using

neural networks

Mitigated

transmission and

computational

overhead

Container

selection based

on user

suggestions led to

performance

degradation

Karn et al., 2021 AAD-EML

Automatic

Anomaly

Detection in the

container using

Explainable

Machine

Learning (AAD-

EML)

Effective

anomaly

detection,

avoided

inference

problems

Convergence

instability, longer

training time

Wang et al., 2022 Container Guard, VA

Container Guard-

based attack

detection

technique in the

cloud

environment

Efficient

detection of

attacks,

leveraging

Variational

Autoencoders

(VA)

Performance

dependent on the

window size

Coppolino et al.,

2021 VSE-HE

Virtual Secure

Enclave-based

Homomorphic

Encryption (VSE-

HE)

Secured data-in-

use, ensured user

privacy

Ciphertext

conversion after

homomorphic

encryption

rendered, HE

unusable

Xie et al., 2021

HBRSS, HE, Fuzzy

Processing

HBRSS-based

method for

securing data

processing and

transmission in

the cloud

environment

Minimized risks

of data

destruction and

tampering

Effectiveness

compromised by

performing

encryption

without

authentication

Singh et al., 2021

Ensemble-based Resource

Allocation

Ensemble-based

resource

allocation

technique

Reduced energy

consumption,

improved

network latency

Did not

adequately

address data

security

 Table 1. Cloud Container Security & Efficiency Techniques Overview

2.1 Research Gap

The existing literature review highlights several research gaps that motivate the development of the proposed secured

cloud container-based framework:

 The reviewed studies primarily focus on either security or performance optimization in cloud containers. A

critical research gap exists in the integration of both aspects to provide a comprehensive solution that balances

security and performance effectively.

 The identified challenge of addressing the "weak violation problem" has not been adequately explored in

previous research. This presents a significant research gap that this paper aims to bridge.

 The use of user suggestions for container selection, as discussed in the literature review, has shown

limitations. There is a need for research that explores alternative, more effective methods for user-centric

container selection that enhance performance without compromising security.

 While some papers introduce effective anomaly detection techniques, challenges related to convergence

instability and longer training times must be addressed to make these methods practical for real-world

applications.

 Papers focusing on resource allocation and network observability should consider the transparency of data

collection to avoid compromising data security in cloud containers.

2.2 Motivation of Research

Given the identified research gaps, the motivation for this research is to develop a comprehensive secured cloud

container-based framework that addresses the shortcomings identified in the existing literature. This framework aims

to make the following contributions:

 Our proposed framework offers an integrated solution that effectively balances security and performance. It

leverages LM-MLPNN for efficient attack detection to prevent data processing failures while ensuring

optimal resource allocation.

 This research is motivated to provide a solution for the "weak violation problem," a challenge that has been

underexplored in prior studies. By doing so, we contribute to a more robust security posture for cloud

containers.

 We seek to overcome the limitations of user-centric container selection by introducing alternative methods

that improve performance without compromising security.

 Our framework addresses the stability issues associated with anomaly detection, making it more suitable for

practical application by mitigating convergence instability and reducing training times.

 We emphasize the importance of data security and transparency, ensuring that the collection and processing

of data in cloud containers are conducted in a secure and transparent manner.

By addressing these research gaps and making these contributions, our research aims to provide a holistic solution

that enhances the security and performance of cloud containers, offering a practical and balanced approach to address

the evolving challenges in this environment.

3.0 PROPOSED ENERGY-EFFICIENT AND SECURED CLOUD CONTAINER METHODOLOGY

Virtualization is a central component in the development of cloud infrastructure and the delivery of cloud services.

Within cloud computing systems, a service model that has gained prominence is that of containers, which provides

horizontally scalable systems. However, a critical concern in the realm of container security emerges due to the fact

that containers on the same physical host share the same operating system. This sharing can lead to security violations

and potentially impact other applications running on the same physical host. In response to these challenges, this paper

presents a proposal for an energy-efficient and secure task scheduling system tailored for cloud containers. Fig. 1.

illustrates the architecture of the proposed system.

Fig. 1. General structure of the proposed methodology

3.1 Data Collection

Primarily, multiple users send the request to the resource manager mR requesting the service in the cloud

environment and register their details like the host ID IDH and IP address IDI . Hence, the n number of data

collected from m number of users
mM UUUUU ,...,,, 321 is depicted as,

 nN DDDDD ,...,,, 321 (1)

Here,
ND implies the data collected.

3.2 Pre-processing

Here, to ensure data integrity and reliability, the collected data are pre-processed. One of the crucial pre-processing

techniques employed in the proposed methodology is discussed further down.

3.2.1 Repeated data removal

There is a chance of repeated data from the same user requesting the same service since multiple requests reach the

resource manager at a time, which might result in the wastage of container resources and time. Thus, to remove the

repeated request from the same user, repeated data removal takes place. Hence, the output obtained after pre-

processing ND̂ is modeled as,

 RN DDDDD ˆ,...,ˆ,ˆ,ˆˆ 321 (2)

Where, RN ,...,3,2,1 implies the pre-processed output.

3.3 Data security analysis using LM-MLPNN

After pre-processing, to secure the container and its resources, the nature of the incoming data is evaluated via the

LM-MLPNN technique. A type of feed-forward neural network made of many input layers, hidden layers, and output

layers is termed Multi-Layer Perceptron Neural Network (MLPNN). MLPNN is responsible for both forward and

backward propagation with weights and bias values in each neuron. Nevertheless, the training time of the network is

augmented by the supervised learning nature of MLPNN. Thus, to produce a reduced error rate, Levenberg-Marquardt

(LM) is used for effective training. This introduction of LM in MLPNN is called as LM-MLPNN. In Fig. 2, the

structure of the proposed LM-MLPNN is cited.

Fig. 2. Baseline structure of proposed LM-MLPNN.

The process involved in the analysis phase is detailed as follows.

LM-based training: Initially, to train the IP address of the users to send the request in reduced time, the proposed

LM-MLPNN framework is trained using LM approach. The steps involved in the LM-based training process are

explained below,

 For training the feed-forward neural network, LM is the most widely used method, and hence its objective

function zQ is explained as,

R

z

z TzQ
1

2

2

1
 (3)

Here, T2 implies the non-linear error function and is defined in (4), and R refers to the number of

collected data requests.

 TDTATz 2 (4)

Where, TA and TD denotes the actual and the expected error values.

 Then, the weight values in the feed-forward neural network zQ are effectively updated using the

following equations.

 zQzQzQ 212

 (5)

Where, signifies the gradient vector and is given in (6).

 TzQzQ z

T (6)

Here,
T implies the jacobian matrix and is expressed below,

l

l

l

Rn

z

Ne

zz

Rn

z

Ne

zz

Rn

z

Ne

zz

T

Q

T

Q

T

Q

T

QQQ

QQQ

..

.....

1
.

1
.

1
.....

1
.

1
.

1

10

10

10

 (7)

 Similarly, the hidden layers perform error calculations Th

z according to (8).

 zQTT

l

l
n

T

n

e

h

z

1

 (8)

Here,
ln

e implies the LM function. Also, all the weights of the neural network are placed inside a single

vector zQ and are detailed below.

R

z

n

T

zz

l

TTzQ
1 1

2 (9)

Weight updation is performed only once, particularly at the end of each epoch in the proposed LM-MLPNN.

Until the target value is achieved, the process is repeated and the error value is determined with the

corresponding weight updation phenomena. Then, the analysis phase is detailed below.

Step 1: Initially, the pre-processed output is applied as input to the input layer of the LM-MLPNN network. Each node

performs both summation and activation functions in LM-MLPNN and is connected by means of weight xw and

bias yB values. Let the input layer output g is defined as,

Rg DDD ˆ,,ˆ,ˆ 21 (10)

Step 2: Then, the output from the input layer is just forwarded to the hidden layer, where the processing of the user

request takes place. Hence, the output of thl a neuron in the hidden layer h is calculated as,

R

g

hg

lhl Bwh
1

 (11)

Here, lh
w implies the weight values of the thl neuron in the hidden layer h ,

hB denotes the bias value of

the hidden layer, and exhibits the ReLU activation function.

Step 3: The vanishing gradient problem that arises in the LM-MLPNN structure is avoided by the ReLU activation

function and is mathematically expressed below,

 xx ~,0max~ (12)

Here,

R

g

hg

lh
Bwx

1

~
.

Step 4: The output of tht neuron in the output layer tO is distinguished as,

M

j

o

ttot BhwO
1

 (13)

Where, t signifies the output layer neurons, and
o

to Bw , implies the weight and bias values of the
tht neural

network.

Step 5: Next, to determine the efficiency of the proposed approach in the attack detection phase, the error values are

evaluated. The error value T

 determination is defined as,

 t
a OT

 (14)

Here, t
a O, signifies the actual and desired value. In case, the error value is zero, then the network is effectively

trained or else, backpropagation takes place. In the end, the classifier delivers the output as an attacker in̂ or normal

user iÂ . Then, the attackers are blocked from further processing in the system whereas the normal users continue

the following criterion. The pseudocode of the proposed LM-MLPNN is elucidated below.

3.4 Attribute extraction

Then, to aid in the effective task (User request) clustering process, the most important and required attributes are

extracted from the normal user. Some of the handcrafted features like task speed, task weight, data size, resource

requirement, and bandwidth utilization are extracted and are detailed below.

 Task speed s : It defines the time required to allocate the resources in the container r to the time taken

to respond to the request s and is formulated in (15).

t

r
s

 (15)

 Task weight w : Task weight refers to the speed and cost of the user request c and is expressed as,

 cs (16)

Where, is a constant. Thus, the k number of attributes extracted aE is modeled as,

 ka EEEEE ,...,,, 321 (17)

Pseudocode for the proposed LM-MLPNN

Input:Pre-processed output ND̂

Output: Classified output

Begin

Initialize theinput layer, hidden layer, and output layer

For RN 1

// LM based training

Evaluateobjective function zQ

Update zQzQzQ 212

For every N

Perform error calculations Th

z

End for

// LM-MLPNN network

Obtaininput layer output g

Determine

R

g

hg

lhl Bwh
1

Compute xx ~,0max~

Generateoutput of tht neuron tO

End for

Calculate the error value

Return attacker in̂ or normal user iÂ

End

3.5 Task clustering using HT-KMA

Here, based on the extracted attributes, the tasks are clustered. By scheduling the tasks to a container, this clustering

process drastically reduces the system’s overhead. The clustering of similar requests is done by the means of HT-

KMA in the proposed methodology. A clustering approach that is well suitable for categorical and numerical data is

termed the KMA. Cluster centroids are selected randomly in KMA. This random selection results in the local optimum

problem. Hence, to select the cluster centers, Homography Transform (HT) is used. This initialization increases the

clustering accuracy. Hence, the introduction of HT with KMA is the so-called HT-KMA. The process involved in HT-

KMA is detailed further down.

 Let
kEEEE ,...,,, 321

 be the attributes extracted and N be the number of available cloud containers

(cluster centroids) Nk BBBB ,,, 21 . Initially, HT-KMA determines the number of clusters.

 Then, the cluster centroids are evaluated by determining the difference between them to calculate the

dissimilarities between the tasks and cluster centroids. The resultant thus obtained is then transformed using

the HT equation
f , which is given as follows,

13231

232221

131211

 f
 (18)

 kB
ˆ

 is the optimized centroid calculated from equation (18).

 Next, to compute the distance between the tasks and optimized cluster centroids, the difference d is used.

The dissimilarities are estimated below,

k

a

akka EBBEd
1

ˆˆ
, (19)

 The task is allocated based on the difference to the nearest container (cluster centroids) for efficient

transmission of data without any loss and the process continues by recalculating the cluster centroids and

calculating the distance between tasks and Cluster centroids. Until the cluster centers are not changed, the

process is repeated. In this way, the tasks are grouped together. Hence, the P number of clusters formed

 pC is grouped as,

1321 ,...,,, Pp CCCCC (20)

3.6 Load Balancing by WRR

After the task clustering, to prevent failure caused by overloading a particular container, the imbalance in the task

request is balanced. Here, the Weighted Round Robin (WRR) technique is utilized for request balancing, which

divides incoming traffic requests evenly across all the workload instances by assigning weight values to each container

based on its processing power or the total required bandwidth. Here, the maximum weight value m is assigned by

the container with the maximum processing power jĈ while the other with half the capacity of
jĈ assigned half

the weight value of
m . But, the container with a capacity lesser than that of the previous one was assigned lower

weight values. Hence, the output obtained after load balancing bl is given as,

 Bb lllll ,...,,, 321 (21)

Here, Bb ,...,3,2,1 implies the number of balanced outputs.

3.7 Optimal container selection through VMD-AOA

Then, by employing the VMD-AOA algorithm, the most appropriate container to perform the clustered task is

selected. Archimedes' optimization algorithm (AOA) is a population-based algorithm. Here, population refers to the

immersed objects. The volume, density, and acceleration of various objects are calculated randomly. Nevertheless,

the overall optimization performance is affected by the random updating of density and volume factors. Thus, for the

updating process, Variational Mode Decomposition (VMD) is used based on the center frequencies and thus

increasing the convergence speed. This amalgamation of VMD in conventional AOA is named VMD-AOA and the

process is discussed below.

Initialization phase: Let the initial AOA population in D dimensional search space be kEEEE ,...,,, 321

(extracted attributes). Primarily, the objects are placed on a fluid surface. Thus, the position of the objects (container)

 b is initialized as below,

 BbLURNDL bbbb ,...,3,2,1; (22)

Where, b signifies the
thb object, and bb UL , implies the lower and upper bound limits of the search space.

Also, the volume Volume and density Density of the
thb object are also initialized randomly and are given as,

RNDVolume

RNDDensity

b

b

 (23)

Where, RND signifies the random values.

Fitness evaluation: After initialization, fitness evaluation occurs. Based on the efficient bandwidth utilization (traffic

handling capacity), the container (object) with the best fitness value is selected and hence, the fitness function bf

is elucidated as,

min

a

b Ef (24)

VMD-based updation: Next, when the object is placed in a fluid, it begins to immerse in the fluid. Now, an upward

force pulls it toward the outside of the surface, which is detailed by means of VMD as follows.

 tEbBWEXPtf
t

b
tMIN a

k

ata

tBWf aa

2

2

 (25)

Here,
af signifies the center frequencies,

aBW implies the bandwidth utilized, t depicts the unit impulse

function, and t signifies the time. The updated density density is given as,

tE

t

tE

ttE
aa

a

edensity (26)

Exploration phase: Then, because of the upward force in the fluid, the objects begin to collide with each other. Hence,

the updated acceleration acc is modeled as,

volumedensity

accVolumeDensity
acc

bbb

 (27)

Where,
bacc implies the acceleration of the

thb object.

Exploitation phase: If there is no collision arises between the objects, the acceleration is updated as,

volumedensity

accVolumeDensity
acc

bestbestbest

 (28)

Here,
bestbestbest accVolumeDensity ,, signifies the density, volume, and acceleration of the best object

obtained through the fitness determination phase.

Acceleration normalization: The acceleration is normalized

NORMbacc to determine the change rate, and is

explained below.

accacc

accacc
sacc NORMb

minmax

min
 (29)

Here, ,s implies the normalization range, and acc signifies the acceleration of the initial objects, and is given

in (30).

 gRNDgacc (30)

Where, ,g signifies the upper and lower bound limits. In the end, the global optimal solution (cloud container)

is obtained, which is denoted as
c and is formulated below.

 Cc ,...,,, 321 (31)

Where, Cc ,...,3,2,1 implies the C number of optimal containers selected. The pseudocode of the VMD-

AOA is given below.

3.8 Secured Scheduling in the optimal container using EC-KDF

It is necessary to protect the task from being attacked by establishing a suitable security service since there is a lot of

security issue in the container. Multi-application synchronization attacks, Dos attacks, and hyper jacking are frequent

attacks in the container. A security model named EC-KDF is deployed to prevent the container from these attacks.

The most efficiently utilized cryptographic technique for security is Elliptic Curve Integrated Encryption Scheme

(ECIES). Here, the keys are generated using Elliptic Curve Cryptography (ECC) followed by the generation of the

Message Authentication Code (MAC) using the random number. The security level of ECIES affected this utilization

of the random number. For generating a secret key, an efficient Key Derivation Function (KDF) is adapted, so that it

can be utilized in the MAC generation procedure. This induction of KDF in the traditional ECIES is named EC-KDF

and the process is described further.

Pseudocode for the proposed VMD-AOA

Input: Extracted attributes aE

Output: Optimal container c

Begin

Initialize AOA population, maximum iteration maxIter

Initializethe volume Volume , density Density , acceleration acc

For ka 1

Evaluate fitness bf

Determine

 tEbBWEXPtf
t

b
tMIN a

k

ata

tBWf aa

2

2

Set 1iter

While maxiteriter do

Update density

tE

t

tE

ttE
aa

a

edensity

If acollision occursthen

Update acceleration acc

Elseno collision

Update

volumedensity

accVolumeDensity
acc

bestbestbest

End if

Compute normalized acceleration

End while

Return optimal container c

End for

End

 Let
pub and

priv

be the public and private key generated by the ECC approach. The public key pub is

computed using (32).

uprivpub

 (32)

Where, u implies the point on the elliptic curve.

 Then, by employing KDF, a secret key is generated. Here, the obtained secret key secF is the combination

of
pub and

priv

 . It is modeled as,

privpubF sec
 (33)

Then, a MAC m is generated by employing the obtained secret key secF using the following

expression.

 ID

c IFm ,sec (34)

 Hence, the MAC is transmitted to the resource manager where decryption takes place for allocating the

optimal container to the respective user. The secret key is shared since the user is classified as normal and

hence it is utilized for successful decryption and utilization of the optimal container. The mathematical

formulation for the decryption operation is given as.

 ID

c IFm ,/sec

 (35)

Hence, the tasks are securely scheduled in the optimal container.

4 RESULTS AND DISCUSSION

Here, the proposed methodology’s performance is analogized to the prevailing techniques grounded on a few

performance metrics. The work is implemented in the working platform of PYTHON.

4.1 Database Description

In the proposed methodology, the NSL-KDD dataset is used for security analysis. Frequent biasing is avoided since

it has no redundant records. The number of details present in the dataset is affordable to have experimented with in

various critical environments. It contains details regarding both attacked and normal characteristics.

4.2 Performance Measurement of proposed EC-KDF

Here, the proposed EC-KDF’s performance is weighed against the prevailing Elliptical Curve Cryptography (ECC),

Rivest-Shamir-Adleman (RSA), ElGamal, and Diffie-Hellman (DH).

Fig. 3. Performance measurement based on the security level.

The graphical representation of the proposed EC-KDF is depicted in Fig. 3. It is appropriate that the security level

of the proposed model increases at about 96.34% but the existing techniques such as ECC (93.29%), RSA (90.78%),

ElGamal (87.19%), and DH (85.49%) are low. The generation of MAC using the secret key generated via the KDF

function improved the performance of the proposed system, which is superior to the conventional techniques.

4.3 Performance analysis of proposed VMD-AOA

Here, the proposed VMD-AOA’s superiority is evaluated and is compared with the existing Archimedes Optimization

Algorithm(AOA), Rain optimization algorithm (ROA), Chimp Optimization Algorithm (ChOA), and Coyote

Optimization Algorithm (COA).

Table 2. Comparative analysis of proposed VMD-AOA on the basis of energy consumption.

Number of

tasks

Energy Consumption rate(mJ)

Proposed

VMD-AOA
AOA ROA ChOA COA

100 2315 3957 5821 7984 10470

200 4532 5680 6998 9754 12471

300 8521 10742 12472 14875 16987

400 10247 13589 15823 17843 19658

500 12354 15784 17894 19875 21578

The energy consumption rates of the proposed VMD-AOA regarding various tasks are delineated in Table 2. The

optimal container selection process is accomplished by the VMD-AOA with less consumption of energy. The

proposed VMD-AOA method consumes 2315 mJ, 4532 mJ, 8521 mJ, 10247 mJ, and 12354 mJ for 100, 200, 300,

400, and 500 tasks, respectively; while the existing works like ROA consume a large amount of energy varying

between 5821 mJ-17894mJ. Likewise, the energy consumption rate varies for other methods also. Thus, in the

proposed methodology, the usage of the variational mode decomposition approach reduced the unwanted artifacts

with the corresponding reduction in the energy consumption rate. So, the proposed VMD-AOA executes the tasks

with limited energy.

Fig. 4. Superiority analysis of the proposed VMD-AOA in terms of resource utilization

The number of resources utilized by the proposed VMD-AOA with the existing techniques is elucidated in Fig. 4.

for performing 100, 200, 300, 400, and 500 tasks, the VMD-AOA utilizes resources up to 9.4545%, 18.3587%,

22.6448%, 19.4578%, and 23.5478%; while, the prevailing AOA, ROA, ChOA, and COA utilize the resources of the

order of 10.6780%, 12.3242%, 14.9876%, and 16.8321% for 100 tasks. Similarly, the amount of resources utilized

varies for various tasks but is not lower than the proposed approach. Thus, the VMD-AOA properly uses the resources,

thereby the over-utilization and under-utilization problems are avoided in the proposed work.

Fig. 5. Performance analysis of the proposed VMD-AOA by means of makespan.

The makespan of the proposed VMD-AOA with the other existing works is depicted in Fig. 5. To complete 100

tasks, the proposed technique requires an average of 3100ms, whereas the existing techniques need 5050 ms (AOA),

7230(ROA), 9380(ChOA), and 11250(COA). Similarly, the makespan varies as the number of tasks varies. Hence,

the proposed VMD-AOA executes the tasks more faster.

Table 3. Degree of imbalance measure of proposed VMD-AOA

Number of

tasks

Degree of imbalance

Proposed

VMD-AOA
AOA ROA ChOA COA

100 0.1489 0.1786 0.1973 0.2047 0.2287

200 0.1477 0.1756 0.1954 0.2057 0.2278

300 0.1454 0.1732 0.1945 0.2038 0.2264

400 0.1428 0.1725 0.1932 0.2021 0.2251

500 0.1405 0.1711 0.1920 0.1918 0.2201

The proposed approach’s degree of imbalance is given in Table 3. For the 100, 200, and 300 tasks, the VMD-AOA

depicted 0.1489, 0.1477, and 0.1454 for the degree of imbalance. For 100,200,300,400, and 500 tasks, the degree of

imbalance decreased at the rate of 0.1786-0.1711 for AOA, 0.1973-0.1920 for ROA, 0.2047-0.1918 for ChOA, and

0.2287-0.2201 for COA, respectively. Thus, when analogized to the prevailing methodologies, the VMD-AOA

performance is better.

Fig. 6. Performance evaluation of proposed VMD-AOA in terms of throughput

The throughput of the proposed VMD-AOA approach is explained in figure 6. For throughput, the VMD-AOA

attained 2945kbps (100); while, the existing methods such as AOA (2892kbps), ROA (2784kbps), ChOA (2656kbps),

and COA (2290kbps) which are lower for 100 number of tasks. Likewise, when analogized to the prevailing

methodologies, the VMD-AOA’s throughput is higher for the remaining number of tasks also. Hence, the VMD-AOA

performs well and achieves a better result.

4.4 Superiority measure of proposed HT-KMA

The proposed HT-KMA’s performance is analogized to the prevailing K-Means Algorithm (KMA), Fuzzy-C means

clustering (FCM), K-Nearest Neighbor (KNN), and Mean Shift (MS).

Table 4. The superiority measure of the proposed HT-KMA on the basis of clustering accuracy.

Number of

clusters

Clustering accuracy (%)

Proposed HT-

KMA
KMA FCM KNN MS

2 92.354 86.123 83.897 82.896 81.024

3 88.378 85.258 82.925 81.925 80.147

4 86.923 83.369 81.036 79.036 78.258

5 85.893 82.470 80.147 76.147 76.369

6 83.485 80.236 78.244 75.924 75.876

The clustering accuracy of the proposed HT-KMA is depicted in Table 4. For clustering accuracy, the HT-KMA

obtains a maximum order of 92.354% (2), 88.378%(3), 86.923%(4), 85.893%(5), and 83.485%(6), respectively; while

the KMA, FCM, KNN, and MS for the 2 clusters are 86.123%, 83.897%, 82.896%, and 81.024%, which are

comparatively low. The clustering accuracy varies as the cluster size varies but is not higher than the HT-KMA. Thus,

the usage of the homography transforms in the KMA technique avoided the local optimal problem and resulted in

higher clustering accuracy.

4.5 Performance analysis of proposed LM-MLPNN

Here, the proposed LM-MLPNN is compared with existing works like MLPNN, Deep Belief Networks (DBN), Deep

Neural Network (DNN), and Convolution Neural Networks (CNN).

 Fig. 7. Performance analysis of the proposed LM-MLPNN with respect to training time

The training time taken by the proposed LM-MLPNN technique is depicted in Fig. 7. to complete the training

process, the proposed LM-MLPNN classifier takes 51774 ms; while the existing technique like MLPNN, DBN, DNN,

and CNN requires 54987 ms, 61774 ms, 84774 ms, and 94774 ms, respectively. Thus, when weighed against the

prevailing methodologies, the LM-MLPNN completes the entire training process with less consumption time.

Fig. 8. Performance analysis of the proposed LM-MLPNN.

The performance analysis of the proposed technique regarding the accuracy and F-measure is exhibited in Fig. 8.

The proposed technique achieves higher metrics rates, such as 97.74% of accuracy, and 97.34% of F-measure. But

the existing works obtain an accuracy rate those overall ranges between 90.14%-96.24%, and F-measure rates that

overall range between 90.35%-96.57%. Thus, the proposed LM-MLPNN efficiently analyses the nature of the user

more efficiently.

4.6 Comparative analysis with literature papers

Here, regarding efficiency, the proposed approach’s performance is weighed against the prevailing DSEOM (Jin et

al., 2021), VCA (Shameem Ahamed et al., 2021), AAD-EML (Karn et al., 2021), and VSE-HE (Coppolino et al.,

2021).

Fig. 9. Comparative measure of the proposed approach.

The superiority measure of the proposed methodology regarding its efficiency is depicted in Fig. 9. When analogized

to the proposed technique, the efficiency of the existing techniques is lower. The inclusion of the security analysis

using the LM-MLPNN and container security using the EC-KDF approach phase improved the efficiency of the

proposed methodology to 97%; while the conventional methodologies have only 82% (VCA), 78% (AAD-EML), and

83% (VSE-HE) efficiency level. Hence, the proposed approach is superior to traditional methods.

5.0 CONCLUSION

Here, an energy-efficient and secure task scheduling method for cloud containers is proposed, employing VMD-AOA,

LM-MLPNN, and the EC-KDF technique. The proposed methodology involves several steps, including registration,

pre-processing, data security analysis, attribute extraction, task clustering, optimal container selection, and secure

request transmission in the chosen container. Subsequently, experimental analysis is conducted using publicly

available datasets. Performance metrics are employed to assess and compare the effectiveness of the proposed

technique. The proposed method achieves a clustering accuracy of 92.354% for 2 clusters with reduced training time

(51774ms), utilizing minimal resources (9.4545), and achieving a throughput of 2945 for 100 tasks. The superiority

measure varies for varying numbers of tasks. Overall, the proposed energy-efficient and secure scheduling framework

outperforms existing state-of-the-art methods, demonstrating increased reliability and robustness. However, it's

important to note that while the proposed methodology secures the OS of the cloud container, the open nature of the

kernel may still impact the secure scheduling process. Therefore, future work will aim to enhance security using

advanced techniques.

ACKNOWLEDGEMENT

This research work has been supported by UGC NET Senior Research Fellowship, University Grants Commission,

New Delhi, India.

REFERENCES

[1] Banse, C., Kunz, I., Schneider, A., & Weiss, K. (2021). Cloud Property Graph: Connecting Cloud Security

Assessments with Static Code Analysis. IEEE International Conference on Cloud Computing, CLOUD, 2021-

September, 13–19. https://doi.org/10.1109/CLOUD53861.2021.00014

[2] Barati, M., Aujla, G. S., Llanos, J. T., Duodu, K. A., Rana, O. F., Carr, M., & Ranjan, R. (2022). Privacy-Aware

Cloud Auditing for GDPR Compliance Verification in Online Healthcare. IEEE Transactions on Industrial

Informatics, 18(7), 4808–4819. https://doi.org/10.1109/TII.2021.3100152

[3] Bhowmik, S., Saira Bhanu, S. M., & Rajendran, B. (2020). Container Based On-Premises Cloud Security

Framework. Proceedings of the 5th International Conference on Inventive Computation Technologies, ICICT

2020, 773–778. https://doi.org/10.1109/ICICT48043.2020.9112561

[4] Coppolino, L., D’Antonio, S., Formicola, V., Mazzeo, G., & Romano, L. (2021). VISE: Combining Intel SGX

and Homomorphic Encryption for Cloud Industrial Control Systems. IEEE Transactions on Computers, 70(5),

711–724. https://doi.org/10.1109/TC.2020.2995638

[5] Gholipour, N., Arianyan, E., & Buyya, R. (2020). A novel energy-aware resource management technique using

joint VM and container consolidation approach for green computing in cloud data centers. Simulation Modelling

Practice and Theory, 104, 102127. https://doi.org/10.1016/j.simpat.2020.102127

[6] Hussein, M. K., Mousa, M. H., & Alqarni, M. A. (2019). A placement architecture for a container as a service

(CaaS) in a cloud environment. Journal of Cloud Computing, 8(1), 1–15. https://doi.org/10.1186/s13677-019-

0131-1

[7] Jin, H., Li, Z., Zou, D., & Yuan, B. (2021). DSEOM: A Framework for Dynamic Security Evaluation and

Optimization of MTD in Container-Based Cloud. IEEE Transactions on Dependable and Secure Computing,

18(3), 1125–1136. https://doi.org/10.1109/TDSC.2019.2916666

[8] Kang, H., Kim, J., & Shin, S. (2021). MiniCon: Automatic enforcement of a minimal capability set for security-

enhanced containers. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS

2021 - Proceedings, Vm. https://doi.org/10.1109/IEMTRONICS52119.2021.9422529

[9] Karn, R. R., Kudva, P., Huang, H., Suneja, S., & Elfadel, I. M. (2021). Cryptomining Detection in Container

Clouds Using System Calls and Explainable Machine Learning. IEEE Transactions on Parallel and Distributed

Systems, 32(3), 674–691. https://doi.org/10.1109/TPDS.2020.3029088

[10] Kong, T., Wang, L., Ma, D., Chen, K., Xu, Z., & Lu, Y. (2020). ConfigRand: A Moving Target Defense

Framework against the Shared Kernel Information Leakages for Container-based Cloud. Proceedings - 2020

IEEE 22nd International Conference on High Performance Computing and Communications, IEEE 18th

International Conference on Smart City and IEEE 6th International Conference on Data Science and Systems,

HPCC-SmartCity-DSS 2020, 794–801. https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00104

[11] Kong, T., Wang, L., Ma, D., Xu, Z., Yang, Q., Lu, Z., & Lu, Y. (2020). Automated Honeynet Deployment

Strategy for Active Defense in Container-based Cloud. Proceedings - 2020 IEEE 22nd International Conference

on High Performance Computing and Communications, IEEE 18th International Conference on Smart City and

IEEE 6th International Conference on Data Science and Systems, HPCC-SmartCity-DSS 2020, 483–490.

https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00059

[12] Liu, C., Cai, Z., Wang, B., Tang, Z., & Liu, J. (2020). A protocol-independent container network observability

analysis system based on eBPF. Proceedings of the International Conference on Parallel and Distributed

Systems - ICPADS, 2020-December, 697–702. https://doi.org/10.1109/ICPADS51040.2020.00099

[13] Niu, M., Cheng, B., Feng, Y., & Chen, J. (2020). GMTA: A Geo-Aware Multi-Agent Task Allocation Approach

for Scientific Workflows in Container-Based Cloud. IEEE Transactions on Network and Service Management,

17(3), 1568–1581. https://doi.org/10.1109/TNSM.2020.2996304

[14] Shameem Ahamed, W. S., Zavarsky, P., & Swar, B. (2021). Security Audit of Docker Container Images in Cloud

Architecture. ICSCCC 2021 - International Conference on Secure Cyber Computing and Communications,

April, 202–207. https://doi.org/10.1109/ICSCCC51823.2021.9478100

[15] Singh, A., Aujla, G. S., & Bali, R. S. (2021). Container-based load balancing for energy efficiency in software-

defined edge computing environment. Sustainable Computing: Informatics and Systems, 30, 100463.

https://doi.org/10.1016/j.suscom.2020.100463

[16] Sun, J., Wu, C., & Ye, J. (2020). Blockchain-based Automated Container Cloud Security Enhancement System.

Proceedings - 2020 IEEE International Conference on Smart Cloud, SmartCloud 2020, 1–6.

https://doi.org/10.1109/SmartCloud49737.2020.00010

[17] Vaishali, K. R., Rammohan, S. R., Natrayan, L., Usha, D., & Niveditha, V. R. (2021). Guided container selection

for data streaming through neural learning in cloud. International Journal of Systems Assurance Engineering

and Management. https://doi.org/10.1007/s13198-021-01124-9

[18] Walkowski, M., Biskup, M., Szewczyk, A., Oko, J., & Sujecki, S. (2019). Container based analysis tool for

vulnerability prioritization in cyber security systems. International Conference on Transparent Optical

Networks, 2019-July, 1–4. https://doi.org/10.1109/ICTON.2019.8840441

[19] Wang, Y., Wang, Q., Chen, X., Chen, D., Fang, X., Yin, M., & Zhang, N. (2022). ContainerGuard: A Real-Time

Attack Detection System in Container-Based Big Data Platform. IEEE Transactions on Industrial Informatics,

18(5), 3327–3336. https://doi.org/10.1109/TII.2020.3047416

[20] Xie, H., Zhang, Z., Zhang, Q., Wei, S., & Hu, C. (2021). HBRSS: Providing high-secure data communication

and manipulation in insecure cloud environments. Computer Communications, 174(November 2020), 1–12.

https://doi.org/10.1016/j.comcom.2021.03.018

